

Catalysis Today 131 (2008) 477–482

Re-investigating the CO oxidation mechanism over unsupported MnO, Mn₂O₃ and MnO₂ catalysts

Kanaparthi Ramesh, Luwei Chen, Fengxi Chen, Yan Liu, Zhan Wang, Yi-Fan Han*

Institute of Chemical and Engineering Sciences (ICES), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore

Available online 26 November 2007

Abstract

Kinetic study of CO oxidation in combination with experiments of temperature-programmed oxidation (TPO) and reduction (TPR) have been performed on various unsupported crystalline manganese oxides (MnO_x); while the reactivity shows an order of $MnO \le MnO_2 < Mn_2O_3$ in a mixture of unit ratio of O_2/CO at/below 523 K. We propose that under the current conditions the interaction of adsorbed CO and O is mainly responsible for CO_2 formation on Mn_2O_3 and MnO_2 catalysts, following either the Langmuir–Hinshelwood mechanism or Eley–Rideal mechanism. Meanwhile, direct evidence from transient CO oxidation suggests that the Mars-van-Krevelen mechanism may occur for all catalysts simultaneously, especially, it is predominant for the MnO catalyst. The evidence of structural modifications during reaction was confirmed by Raman spectra obtained from used MnO.

© 2007 Elsevier B.V. All rights reserved.

Keywords: CO oxidation; Manganese oxide; Kinetics; Mechanism; Raman spectra; TPR; TPO

1. Introduction

Catalytic oxidation of CO has long been studied on various manganese oxide (MnO_x) catalysts, e.g., unsupported MnO₂ [1,2], supported MnO_r [3–7] and copper manganese oxide [8]. It still attracts considerable attentions from both academia and industry, due to the low cost of MnO_x in contrast to the expensive noble metal catalysts. With the growing demands of the innovative technology, manganese oxides based catalysts may find a new application for the selective removal of CO in H₂-rich gas for fuel cells [9–11] and indoor air purification. An understanding of the reaction mechanism and its relationship with the surface structure is of great importance for the design of new generation combustion catalysts. Especially, MnO_xbased materials find the application as catalysts for the low temperature-combustion, for instance, below 523 K [12]. However, the relevant mechanism for CO oxidation on MnO_x catalysts at low temperatures has rarely been addressed.

So far, several kinetic and mechanistic studies have contributed to CO oxidation on the MnO_x -based catalytic system. Among them, the Mars-van-Krevelen mechanism, thus,

the adsorbed CO is reacted with the labile lattice oxygen [2–5,9] has been widely accepted for this reaction above ca. 773 K, as illustrated in Eq. (1). The reactivity is, likely, associated with the capacity of manganese to form various oxidation states, e.g., redox reaction of Mn²⁺/Mn³⁺ or Mn³⁺/Mn⁴⁺, and "oxygen mobility" in the oxide lattice. In contrast, Brooks [1] in a very early study proposed that oxidation of CO might proceed via a mechanism of Rideal type on a MnO₂ surface, thus, CO₂ was produced by the reaction between the radical CO and the lattice/gas phase oxygen.

CO(ads) + O²⁻(lattice) +
$$2Mn^{4+/3+}$$

 $\rightarrow CO_2(ads) + 2Mn^{3+/2+}$ (1)

Nevertheless, the debate about the mechanism, e.g., does the redox reaction of Mn cations really occur in the reaction? And how does the oxidation state of Mn affect the catalytic activity or does the CO oxidation go through the Langmuir–Hinshelwood mechanism? And so forth, will be lasting due to the lack of effective technique for "in situ" observation of the reaction. To date, the studies in combination with kinetics and spectroscopy are still the most effective way to obtain the reaction information.

Contradictory results in the previous studies are possibly caused by the inconsistent composition of MnO_x (mixture of

^{*} Corresponding author.

E-mail address: han_yi_fan@ices.a-star.edu.sg (Y.-F. Han).

Mn²⁺, Mn³⁺ and Mn⁴⁺, and interaction with other metal oxides, such CeO_x, ZrO₂) and diverse reaction conditions. Consequently, the obtained kinetics may not reflect the "real" behavior of MnO_x catalysts under reaction conditions. Therefore, in the present study intrinsic reaction rates of CO oxidation are acquired on high purity of Mn(IV)O₂, Mn₂(III)O₃ and Mn(II)O oxides below 523 K and unit ratio of CO/O₂. Such reaction conditions may minimize the variation of the oxidation state of Mn at the surface. On the other hand, demonstration of the redox properties of surface Mn in the reaction has been carried out by using techniques of TPR, TPO, XPS and Raman spectroscopy. To the best of our knowledge, the reported results have been rarely addressed for this catalytic system.

2. Experimental

2.1. Catalyst property and reactivity measurements

High purity of MnO_x , MnO (Aldrich, 99.99%, 1.1 m²/g), Mn_2O_3 (Aldrich, 99.999%, 4.0 m²/g) and MnO_2 (Aldrich, 99.999%, 0.9 m²/g) as received, were used as catalysts in the present study. Scanning electron microscopy (SEM, JEOL, JBM-6700F) revealed that all MnO_x particles were randomly distributed in the range of 0.06–0.7 μ m, corresponding to an average particles size of \sim 0.5 μ m.

The activity measurements were carried out in a micro-plug-flow reactor. Before each experiment, the catalyst was conditioned in situ by heating in an ultra-high purity of Helium (UHP) at 323 K (2 h, 30 ml/min). The reactions were carried out in space velocity in the range of $6000-18,000 \ h^{-1}$ at one atmosphere pressure: $5.0 \ kPa$ CO, $5.0 \ kPa$ O₂ and He. The analysis of the reactants and products was done with an online GC (Shimadzu GC-14B) which is equipped with a carbosieves-II column. In the differential flow measurements, the conversion was maintained below $\sim 10\%$ by diluting the catalyst with SiO₂. Each data point in kinetic study was collected after reaction 1 h. Absolute reaction rates were calculated for the average concentration of each component \dot{c}_i , at the in- and outlet of the reactor:

$$r_{\text{CO}} = \frac{6.02 \times 10^{23} \times \dot{c}_{\text{CO,in}} \times X_{\text{CO}} \times \dot{V}_{\text{gas}}}{m_{\text{MnO}_x}}$$
[moles s⁻¹ gMnO_x⁻¹]

 m_{MnO_x} is the mass of MnO_x in the reactor bed, \dot{V} the total molar flow rate, X_{co} the conversion of CO based on CO_2 formation, \dot{c}_{CO} the concentration of CO in gas mixture, equal to p_i/p_0 , p_i the partial pressure of reactants and p_0 is the total pressure in the system.

2.2. Temperature programmed oxidation (TPO), temperature programmed reduction (TPR) and transient CO oxidation

Prior to the TPR/TPO experiments, MnO_x (50 mg) was pretreated in UHP Ar at 323 K in a flow rate of 30 ml/min for 2 h to remove excess moisture. Experiments of TPR, TPO and

transient CO oxidation were performed in a micro fixed-bed reactor, which is connected to GC-QMS (HPR-20, Hiden Analytical Ltd.); while masses (m/e: 2, 16, 18, 28, 32 and 44) were monitored, and the detection limits in Ar are 100 ppm for CO, 10 ppm for CO₂ and H₂, and less than 1 ppm for O₂. The temperature was increased in ramp rate of 10 K/min from 323 to 900 K with a linear heating in a carrier gas of O₂ (5.0 kPa + Ar) for TPO and H₂ (5.0 kPa + Ar) for TPR with total flow rate of 50 ml/min.

In a typical experiment of the transient CO oxidation, the catalyst (150 mg) was purged with H_2 (H_2 5.0 kPa + Ar) at 473 K for 2 h before dosing CO (consecutive pulse of CO: each time 10 μ ml of CO 5.0 kPa + Ar). Additionally, the reduction of MnO with H_2 was also carried out at 900 K under the same conditions.

2.3. Laser Raman spectroscopy (LRS)

The dispersive Raman microscope employed in the present study was a JY Horiba LabRAM HR equipped with three laser sources (UV, Visible, and NIR), a confocal microscope, liquid nitrogen cooled charge-coupled device (CCD) and a multichannel detector (256×1024 pixels). The visible 514.5 nm argon ion laser was selected to excite the Raman scattering. The laser power from the source is around 20 mW, but when it reached the samples, the laser output was reduced to around 6–7 mW after passing through filtering optics and microscope objective. A $100 \times$ objective lens was used and the acquisition time for each Raman spectrum was approximately 60–120 s depending on the sample. The Raman shift range acquired was in the range of 200–1200 cm $^{-1}$ with spectral resolution 1.7–2 cm $^{-1}$. Each spectroscopy was collected only after 100 scans.

2.4. X-ray photoelectron spectroscopy (XPS)

XPS measurements were performed on a VG ESCALAB 250 spectrometer, using Al Kα radiation (1486.6 eV, pass energy 20.0 eV). The base pressure of the instrument is 1×10^{-9} Torr. The background contribution B (E) (obtained by shirley method) caused by inelastic process was subtracted, while the curve-fitting was performed with Gaussian-Lorentzian profile by an standard software. The binding energies (BEs) were calibrated using C1s peak at 285.0 eV. The instrument was also calibrated by using Au wire. XPS spectra were recorded at $\theta = 90^{\circ}$. The atomic ratios of oxygen/ manganese (O/Mn) have been calculated from the equation [13,14]: $N_0/N_{\rm Mn} = (I_0/S_0)/(I_{\rm Mn}/S_{\rm Mn})$, where the $I_{\rm Mn}$ and I_0 are the time-normalized intensities of the Mn2p and O1s levels, and S_0 (0.711 for O1s) and S_{Mn} (2.420 for Mn2p) are the atomic sensitivity factors for X-ray sources at 90°. The BEs O1s at 529.0-530.0 eV were selected as the contributions from manganese oxides [15].

3. Results and discussion

The H_2 -TPR profiles of various bulk MnO_x are shown in Fig. 1, which shows that the H_2 -comsumption started around

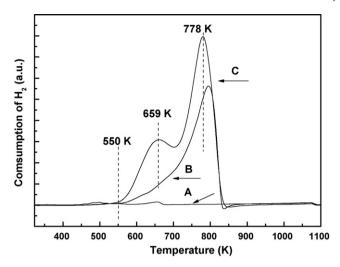


Fig. 1. TPR profiles of MnO (A), Mn_2O_3 (B) and MnO_2 (C) oxides in the mixture of H_2 (5.0 kPa)–Ar with a flow rate of 50 ml/min.

550 K for both MnO₂ and Mn₂O₃; however, detectable depletion of H₂ was not observed for MnO up to 900 K. The TPR of MnO₂ shows two overlapped peak maxima corresponding to the temperatures of 659 and 778 K. These two peaks can be attributed to the two-step reduction of MnO₂: the first step corresponds to the reduction of MnO₂ to Mn₃O₄ and the second step due to the further reduction of Mn₃O₄ to MnO. This result is in good agreement with the H₂-TPR results of MnO₂ reported in the literature [16]. Compared to that of MnO₂, the Mn₂O₃ showed single reduction peak corresponding temperature maxima at 778 K. However, it is very hard to define clear boundaries between the various regions. During the H₂-TPR, Mn_2O_3 reduces to Mn_3O_4 in the first step and further reduces to MnO. On the other hand, as illustrated in Fig. 2, O₂-TPO experiments reveal that oxidation of MnO starts at ca. 438 K followed a maximum at 881 K; while Mn₂O₃ is very stable in oxygen atmosphere till 1100 K. Therefore, under the reaction conditions at/below 523 K and unit ratio of O2/CO the oxidation states of Mn on the surface should remain for

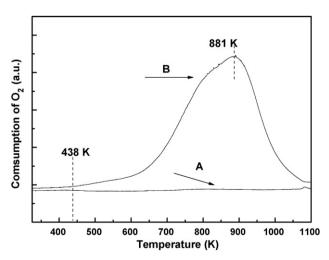


Fig. 2. TPO profiles of MnO (A) and Mn_2O_3 (B) in the mixture of O_2 (5.0 kPa)—Ar with a flow rate of 50 ml/min. The manganese oxides, as received, purged with Ar at 323 K for 2 h before heating, 10 K/min of the ramp rate.

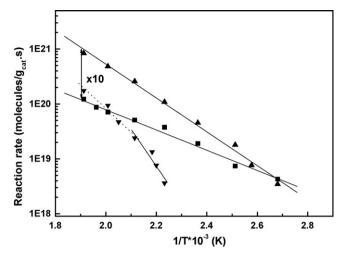


Fig. 3. Arrhenius plots from CO oxidation on the high purity of MnO (∇), Mn₂O₃ (\blacksquare) and MnO₂ (\triangle) oxide catalysts, feed gas: CO (5.0 kPa) + O₂ (5.0 kPa), helium balance.

Mn₂O₃ and MnO₂, and slight oxidation of Mn may occur for MnO as also evidenced with LRS spectra (see Fig. 4A).

Arrhenius plots in Fig. 3 show that the CO oxidation rate is strongly dependent on the reaction temperature in the region of 373–523 K. Onset of reaction can be observed at 373 K for both Mn₂O₃ and MnO₂, while the reactivity for Mn₂O₃ is higher than MnO₂ in the temperature range of 373-523 K. The ratediscrepancy for two catalysts increased with the rise of temperature, about an order of magnitude variation was measured at 523 K. In contrast, the reactivity for MnO catalyst was not observed until 448 K. Interestingly, this temperature also corresponds to where MnO start oxidizing during TPO. Among three catalysts, MnO exhibited the lowest reactivity in the temperature range of 448-473 K; but the rate for MnO became comparable to MnO₂ when the temperature was above 473 K. The apparent activation energies (Ea), for all catalysts and the values reported in the literature have been listed in Table 1. Arrhenius plots for MnO can be divided into two parts according to the relationship of \log (rate) versus 1/T, corresponding to a Ea value of 129.1 kJ/mol in the range of 373–473 K and 81.6 kJ/mol in the range of 473–523 K. It is 1.5-3.0 times higher than that for Mn₂O₃ (57.9 kJ/mol) and MnO₂ (34.3 kJ/mol). The Ea for MnO₂ here is close to 26.7 kJ/ mol obtained by Brooks [1]. In the similar conditions, Cracium [4] reported that Ea value was dependent on the size of MnO₂ particles, varying from 44.6 to 120 kJ/mol corresponding particle size in the range of 6.7–16.7 nm, which is higher than what we observed in the present study.

The LRS spectra, as shown in Fig. 4, together with the XRD patterns (not shown for the sake of brevity), revealed that the bulk structure of the Mn_2O_3 and MnO_2 catalysts corresponds to α - and β-type, respectively [17–19]. The LRS spectra from α - Mn_2O_3 shows bands at 312, 651 and 691 cm⁻¹ (Fig. 4B). The peaks from β-MnO₂ at 536, 668 and 762 cm⁻¹ are indicative of stretching mode of the MnO₆ octahedra (Fig. 4C). The bands at 309/310, 365, 502/472, and 641/651 cm⁻¹ detected for both fresh and spent catalysts may correspond to the out-of-plane bending modes of MnO_3 , asymmetric stretch of bridge oxygen

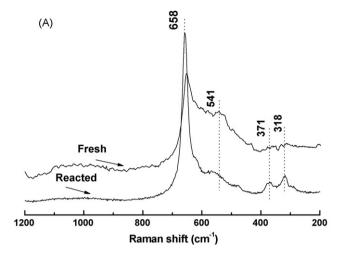
Table 1 Apparent activation energy (Ea) for CO oxidation on unsupported MnO_x catalysts and comparison with the literature data

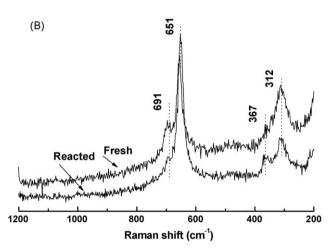
Catalysts	Ea (kJ/mol)	Temperature range (K)	Conditions	Ref.
MnO (bulk)	129.1 ± 5.0	373–473	$p_{\rm CO}$: 2.5 kPa, $p_{\rm O_2}/p_{\rm CO} = 1.0$	This study
	81.6 ± 2.0	473–523		
Mn_2O_3 (bulk)	57.9 ± 2.0	373–523	$p_{\rm CO}$: 2.5 kPa, $p_{\rm O_2}/p_{\rm CO}=1.0$	This study
MnO ₂ (bulk)	34.3 ± 2	373–523	p_{CO} : 2.5 kPa, $p_{\text{O}_2}/p_{\text{CO}} = 1.0$	This study
MnO ₂ (bulk)	26.7	448–573	$p_{\rm CO}$: 3.4–5.0 kPa, in air	[1]
MnO_2/SiO_2 (d_{MNO_2} : 6.7–16.7 nm)	44.6-120.0	433–573	p_{CO} : 1.0 kPa, $p_{\text{O}_2}/p_{\text{CO}} = 1.1$	[4]
MnO_2/Al_2O_3	104.0	448–515	p_{CO} : 15.0 kPa, $p_{\text{O}_2}/p_{\text{CO}} = 1.0$	[3]

species (Mn–O–Mn), symmetric stretch of MnO_x groups, respectively [19-22]. Fig. 4A shows that two new bands, 318 and 371 cm⁻¹, appeared for the spent MnO catalyst after 5 h reaction at 523 K, indicating that the phase was moderately modified during the reaction by forming Mn₃O₄-like species [20]. TPO spectra (Fig. 2) also indicated that the oxidation of MnO started at ca. 438 K in the oxygen atmosphere. Fig. 4B and C show the LRS spectra from the fresh and used Mn₂O₃ and MnO₂ catalysts. Obviously, the phases of Mn₂O₃ and MnO₂ were almost unchanged after reaction. Furthermore, from the LRS spectra we observed that pretreating the catalysts in the oxidative (5 kPa O₂ + Ar, 5 h, 523 K) or reductive (5 kPa CO + Ar, 5 h, 523 K) atmosphere has not changed the surface structure. It is interesting to note here that XRD of spent catalysts also proved that there was almost no variation for crystalline structures of MnO₂ and Mn₂O₃ catalysts.

Fig. 5 shows the Mn2p X-ray photoelectron spectra of various MnO_x. Table 2 presents the XPS results of binding energies (BE), full width at half maxima (FWHM) and surface atomic ratios of O/Mn of various MnO_x catalysts before and after reaction. From Table 2 it can be concluded that there is no difference in terms of BE for both fresh and spent catalysts. The BE around 642.1 and 641.2 eV could be attributed to the presence of Mn⁴⁺ and Mn³⁺ species, respectively [23]. From Fig. 5 it can be seen that the bulk MnO2 catalyst shows an asymmetric peak located at 642.1 eV (Mn2p3/2) indicating the presence of Mn⁴⁺. The BEs of Mn3/2 shifted to lower values in the following order: $MnO_2 > Mn_2O_3 > MnO$. The variation of XPS binding energies of Mn2p alone, from Mn²⁺ to Mn⁴⁺, usually is too narrow (less than ca. 1.0 eV) to precisely evaluate the Mn valence in MnO $_x$, since the Mn2p features are relatively broad for all MnO_x compounds. The assignment can be complicated further if the Mn in samples is present of several chemical states. So, the extent of Mn3s multiplet splitting measured simultaneously (Mn3s Δ E) offers additional insights into the Mn chemical states. The oxidation states from Mn2p (column 2 in Table 2) and Mn3s Δ E (column 4 in Table 2) for the fresh and spent catalysts are almost consistent.

As shown in Fig. 3, the reactivity of MnO_x follows an order: $MnO < MnO_2 < Mn_2O_3$. Three factors, presumably, impact the reactivity of MnO_x catalyst: (i) variation of Mn oxidation states, (ii) bonding labile lattice oxygen and (iii) retention of an oxidation products on the surface phase, such as CO2 and CO₃²⁻ [5]. For conciseness, here we confine our discussion mainly on the first factor. Adsorption of CO on Mn²⁺, Mn³⁺ and Mn⁴⁺ at room temperature has been well proved by the infrared spectroscopy [5,24,25]. Cracium et al. [5] has found that Mn²⁺– CO species are more stable than the Mn³⁺-CO and Mn⁴⁺-CO species due to a back π -donation only exist in the case of former. This seems to be the primary reason that MnO shows the lowest reactivity among three catalysts, because more energy is needed for activating the CO-Mn²⁺ bond in the reaction. Consequently, MnO exhibited higher activation energy (Ea) than Mn₂O₃ and MnO₂ as listed in Table 1. A moderate fall of Ea for MnO at above 473 K may hint a subtle modification of mechanism at elevated temperatures. Moreover, higher Ea for MnO in contrast to Mn₂O₃ and MnO₂ indicated that oxidation of CO might go through quite different mechanism for those catalysts.


The LRS spectra show the structure of the surface phase was little affected in the reduction/oxidation (523 K). Based on the TPO and TPR results, we infer that the redox properties of Mn cations are unlikely to happen for the most of Mn on the Mn_2O_3 and MnO_2 surfaces under the current reaction conditions. The active oxygen for the oxidation of CO, at least for the type of catalysts, in this study, may not come from the lattice oxygen as


Table 2 Results of XPS for MnO, Mn₂O₃, MnO₂ catalysts

	•				
Samples	BE Mn 2p _{3/2} (FWHM) (eV)	BE Mn2p _{1/2} (FWHM) (eV)	Mn3sΔE (eV)	Mn oxidation states	O/Mn atomic ratios
MnO ^a	641.2 (3.3)	653.0 (3.3)	6.3	2+	0.95
MnO^b	641.2 (3.3)	653.1 (3.2)	6.4	2+	0.97
$Mn_2O_3^a$	641.8 (3.0)	654.1 (3.2)	4.9	3+	1.67
$Mn_2O_3^b$	641.8 (3.0)	654.2 (3.1)	5.0	3+	1.65
MnO_2^a	642.1 (2.2)	654.5 (2.7)	4.5	4+	1.93
MnO_2^b	642.3 (2.3)	654.5 (2.6)	4.5	4+	2.0

^a Prior to XPS measurement catalysts (fresh) were dehydrated at 393 K for 2 h in a He flow rate of 20 ml/min.

^b Spent catalysts were from CO oxidation at 473 K for 10 h in a mixture of CO (5.0 kPa), O₂ (5.0 kPa) and Ar under a space velocity: 18,000 h⁻¹.

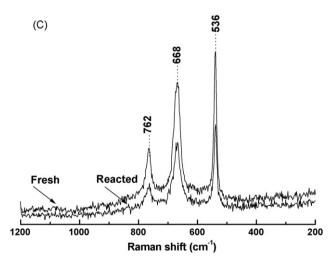


Fig. 4. Laser Raman spectra of (A) MnO, (B) Mn_2O_3 and (C) MnO_2 under ambient conditions, fresh: purged in 30 ml/min He at 323 K for 2 h; reacted: reacted in mixture of CO (5.0 kPa) + O_2 (5.0 kPa), helium balance, at 523 K with a flow rate of 30 ml/min for 5 h.

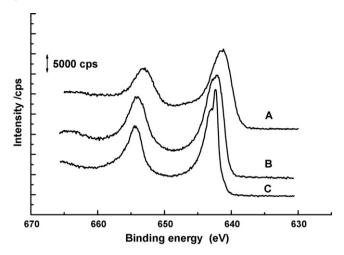


Fig. 5. X-ray photoelectron spectra of MnO (A), Mn_2O_3 (B) and MnO_2 (C) catalysts.

popularly accepted view of point, instead, from adsorbed oxygen. That is to say, the Langmuir–Hinshelwood mechanism is supposed to be responsible for this reaction.

For the purpose above-mentioned, subsequently, we performed the transient CO oxidation for all catalysts with a "net" surface, which is lean for the adsorbed oxygen. The removal of adsorbed oxygen from the surface of catalysts was done by reacting with H_2 at 473 K (purging with H_2 for 2 h); then dosing CO only less than 10% conversion of CO was observed for MnO₂ and Mn₂O₃, but complete conversion of CO observed for MnO. Especially, the formation of CO₂ was detected for MnO at the same temperature after treating at 900 K in H_2 for 2 h. Therefore, CO oxidation may mainly go through the Mars-van-Krevelen mechanism on the MnO catalyst. However, the same mechanism may not be ruled out for Mn_2O_3 and MnO_2 due to the occurrence of redox reaction for the small fraction of Mn cations at the top layers of the surface.

The adsorption of oxygen on the surface defects has been widely demonstrated for the transition metal oxides [26,27]. We assume that the number of the surface defects for MnO₂ and Mn₂O₃ may be higher than that for MnO. Thus, the extremely low Ea value is understandable for the MnO₂ and Mn₂O₃ in comparison with that for MnO catalysts, because more energy during the reaction is required for the mobility of lattice oxygen for MnO. In particular, the creation of Mn₃O₄-like species for the reacted MnO, as observed from the LRS spectra (Fig. 4A), might be an indirect evidence for the redox of Mn²⁺/Mn³⁺ on MnO surface phase during the reaction.

For the same reaction on MnO_x/support catalysts, Cracium et al. [5] suggested that Mn³⁺ and Mn²⁺ were weaker catalytic active sites than Mn⁴⁺ sites, it led to the relatively higher reactivity for MnO₂ than Mn₂O₃ and MnO above 573 K. It is contradictory to our observations: the reactivity of Mn₂O₃ is superior to MnO and MnO₂ as illustrated in Fig. 3. The high reactivity for Mn₂O₃ may be attributed to not only the moderate strength of CO–Mn³⁺ bond but also the abundant defects/ oxygen vacancies on its surface phase [27]. Similarly, in the study of NO decomposition over the catalysts of Mn₂O₃ and Mn₃O₄ Vannice and Yamashita [28–30] also suggested that the

route for reaction might proceed via the Langmuir–Hinshel-wood mechanism, but the temperature need to be greater than 773 K. Moreover, they observed that the Mn_2O_3 released more lattice oxygen than other MnO_x in a TPD experiment.

In summary, the preliminary results in this study suggests that under the restrict conditions (at/below 523 K and unit ratio of $\rm O_2/CO$) CO oxidation may proceed via the interaction between adsorbed CO and O (Langmuir–Hinshelwood mechanism) on the bulk $\rm Mn_2O_3$ and $\rm MnO_2$ catalysts; while the reaction of adsorbed CO with the lattice oxygen (Mars-van-Krevelen mechanism) is primarily responsible for $\rm CO_2$ formation on the MnO catalyst. In addition, the catalytic reactivity for those Mn oxides can be affected by the oxidation states of Mn cations in the low temperature CO oxidation.

4. Conclusions

Different structures of MnO_x were tested for the low temperature CO oxidation reaction. The catalytic reactivity followed the trend of $MnO \le MnO_2 < Mn_2O_3$ in a mixture of unit ratio of O_2/CO at/below 523 K. H_2 TPR results showed that MnO_2 reduces to MnO in two subsequent steps via forming Mn_3O_4 . TPR, TPO and XPS studies showed that under the reaction conditions at/below 523 K and unit ratio of O_2/CO the oxidation states of Mn on the surface remain for Mn_2O_3 and MnO_2 . However, a slight oxidation of MnO during the reaction was observed by TPO and this result was further confirmed by the LRS spectra. Under the restrict conditions CO oxidation may follow the Langmuir–Hinshelwood mechanism on the bulk Mn_2O_3 and MnO_2 catalysts; while for the MnO catalyst the reaction primarily follow the Mars-van-Krevelen mechanism.

References

- [1] C.S. Brooks, J. Catal. 8 (1967) 272.
- [2] M.I. Zaki, M.A. Hasan, L. Pasupulety, K. Kumari, Thermochim. Acta 311 (1998) 97.
- [3] J. Mooi, P.W. Selwood, J. Am. Chem. Soc. 74 (1952) 2461.
- [4] R. Cracium, Catal. Lett. 55 (1998) 25.
- [5] R. Cracium, B. Nentwick, K. Hadjiivanov, H. Knözinger, Appl. Catal. A: Gen. 243 (2003) 67.

- [6] Y.-F. Han, F. Chen, Z.-Y. Zhong, K. Ramesh, E. Widjaja, L.-W. Chen, Catal. Commun. 7 (2006) 739.
- [7] Y.-F. Han, F. Chen, Z.-Y. Zhong, K. Ramesh, L.-W. Chen, E. Widjaja, J. Phys. Chem. B 110 (2006) 24450.
- [8] G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui, S.H. Taylor, Appl. Catal. A: Gen. 166 (1998) 143.
- [9] H. Knözinger, Heterogeneous catalysis and solid catalysts, in: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA., 2002.
- [10] Y. Teng, H. Sakurai, A. Ueda, T. Kobayashi, Int. J. Hydrogen Energy 24 (1999) 355.
- [11] Y.-F. Han, M. Kahlich, M. Kinne, R.J. Behm, Appl. Catal. B 50 (2004) 209.
- [12] Y.-F. Han, Z.-Y. Zhong, L.-W. Chen, E. Widjaja, F. Chen, Y. Liu, Z. Wang, Singapore International Chemical Conference 4, 8–10 December 2005, Singapore, (2005), p. 72.
- [13] J.H. Scofield, J. Electron. Spectrosc. Relat. Phenom. 8 (1976) 129.
- [14] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in: J. Chastain, C. King, Jr. (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995, ISBN: 0-9648124-1-X.
- [15] S.-J. Lee, A. Gavriilidis, Q.A. Pankhurst, A. Kyek, F.E. Wagner, P.C.L. Wong, K.L. Yeung, J. Catal. 200 (2001) 298.
- [16] J. Carno, M. Ferrandon, E. Bjonbom, S. Jaras, Appl. Catal. 155 (1997) 265.
- [17] C. Julien, M. Massot, S. Rangan, M. Lemal, D. Guyomard, J. Raman Spectrosc. 33 (4) (2002) 223.
- [18] F. Kapteijn, A.D. van Langeveld, J.A. Moulijn, A. Andreini, M.A. Vuurman, A.M. Turek, J.M. Jehng, I.E. Wachs, J. Catal. 150 (1994) 94.
- [19] M.C. Bernard, A. Hugot-Le Goff, B.V. Thi, S. Cordoba de Torresi, J. Electrochem. Soc. 140 (1993) 3065.
- [20] F. Buciuman, F. Patcas, R. Cracium, D.R.T. Zahn, Phys. Chem. Chem. Phys. 1 (1999) 1.
- [21] Y.T. Chua, P.C. Stair, I.E. Wachs, J. Phys. Chem. B 105 (2001) 8600.
- [22] J.M. Chalmers, P.R. Riffiths (Eds.), Handbook of Viberational Spectroscopy, Jim Wilkie, J & R Press, UK, 2002.
- [23] J. Rosso, M.F. Hochella Jr., Surf. Sci. Spectra 4 (1998) 253;M.A. Stranick, Surf. Sci. Spectra 6 (1999) 39.
- [24] G.P. Harrison, E.W. Thornton, J. Chem. Soc. Faraday Trans. 75 (1979) 1487.
- [25] M. Kantcheva, M.U. Kucukkal, S. Suzer, J. Catal. 190 (2000) 144.
- [26] Z. Yan, S. Chinta, A.A. Mohamed, J.P. Fackler Jr, D.W. Goodman, J. Am. Chem. Soc. 127 (2005) 1604.
- [27] M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 104 (2004) 4063.
- [28] T. Yamashita, M.A. Vannice, J. Catal. 161 (1996) 254.
- [29] T. Yamashita, M.A. Vannice, J. Catal. 161 (1996) 158.
- [30] T. Yamashita, M.A. Vannice, Appl. Catal. B: Environ. 13 (1997) 141.